

CO₂ SITE CLOSURE ASSESSMENT RESEARCH

The EU project CO₂CARE...

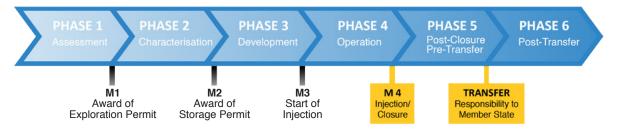
 ${
m CO_2CARE}$ aims to support the large-scale demonstration of the ${
m CO_2}$ Capture and Storage (CCS) technology by addressing the research requirements of a specific part of the chain: ${
m CO_2}$ storage site abandonment and transfer of responsibility.

To guarantee the safe and long-term storage of CO₂, three main requirements- or 'high-level' criteria, must be demonstrated*:

Observed behaviour of the injected CO, conforms to the modelled behaviour

High level

criteria


- · No detectable leakage
- Storage site is evolving towards a situation of long-term stability

CO₂CARE has an important role to play: identify and deliver technologies and procedures to guarantee that these criteria can be met, thus ensuring the post-closure safety and long-term stability of storage sites.

CO₂CARE within a bigger picture...

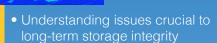
CO₂ Storage Life Cycle, broken down into Phases and Milestones*.

COCCARE's scope covers the end of phase 4, phases 5 and 6.

Ultimately, CO₂CARE will formulate robust procedures for site abandonment that will ensure long-term integrity of the storage complex.

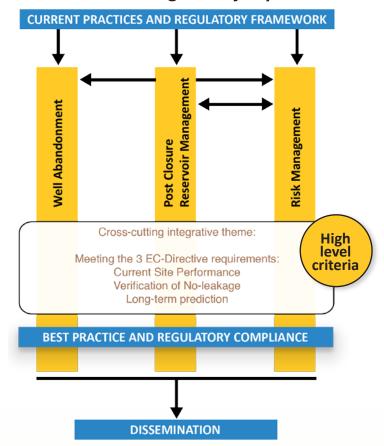
* Source: EC Guidance Document 3 "Implementation of Directive 2009/31/EC on the Geological Storage of Carbon Dioxide"

VATTENFALL 叁



Aim - Elaboration of procedures for safe well abandonment

- Monitoring techniques for abandoned wells
- Field case studies on well abandonment
- Laboratory wellbore test rig designed and constructed to investigate the behaviour of rockcement-casing interfaces subjected to CO₂— brine fluxes under simulated downhole conditions. Long-term experiments will continue until completion of the project


- Study of conformity between monitored and simulated site behaviour (short and long term)
- Development and implementation of monitoring and remediation techniques

im - Assessment and mitigation of the risks related to CO₂ storage

- Methods and tools for long-term safety
- Decision-aid tools for transfer of responsibility (traffic light system

The objectives of CO₂CARE will be achieved through six interrelated work packages concentrating on key topics

CURRENT PRACTICES AND REGULATORY FRAMEWORK

Aim - Provide a review of international practices and regulations

- Report on International Regulatory Requirements on CO₂ Geological Storage and Site Abandonment, focussing on phases 5 + 6 after the end of CO₂ injection.
- Current Site Abandonment Methodologies in Relevant Industries: an overview of current practices in relevant industries (mainly oil & gas).

BEST PRACTICE AND REGULATORY COMPLIANCE

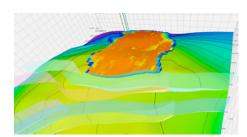
Aim - Distill the results from the research work packages, to test the guidelines for regulatory compliance and to develop Best Practice guidelines (BPG) for site abandonment

BPG will be established and disseminated to key stakeholders (operators/regulators/NGOs) via workshops and the website.

A series of 'dry run' applications will be developed for site closure and abandonment, based on a range of existing storage and injection sites with different geological and geographical (surface) conditions.

Starting in August 2012

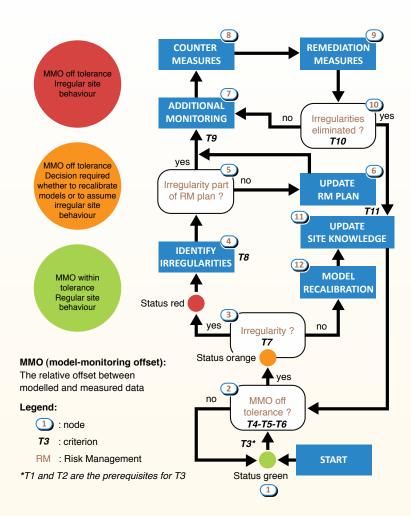
Aim - Dissemination of results to stakeholders and the public


- Target groups: Scientific and technical communities; administrative and political leaders; general public.

DISSEMINATION

- Tools: Web portal with public & member areas; scientific conferences & workshops; project brochures; media interaction (TV, radio, newspaper); actions at the Ketzin pilot site information centre (Germany).

Highlights of results from the CO₂CARE teams so far...


- Enhanced understanding of well abandonment
- More efficient reservoir management
- Assessment of seismic monitoring for Sleipner and Ketzin
- Assessment of modelled predictions
- Verification of convergence with time between monitoring and modelling at Sleipner
- Reservoir simulations assessing relevant trapping mechanisms
- Field experiments investigating long-term monitoring technologies

Simulated spatial distribution of the dissolved CO₂ plume in the Stuttgart formation for the year 2100 at the Ketzin pilot site

POST-OPERATIONAL RISK MANAGEMENT -TRAFFIC LIGHT SYSTEM TOOL

A first version of a decision-support system has been created using defined high-level (main requirements) and low-level criteria. The system provides instructions for operators on how to act in case of irregularities after site closure, with three risk levels – green, orange and red.

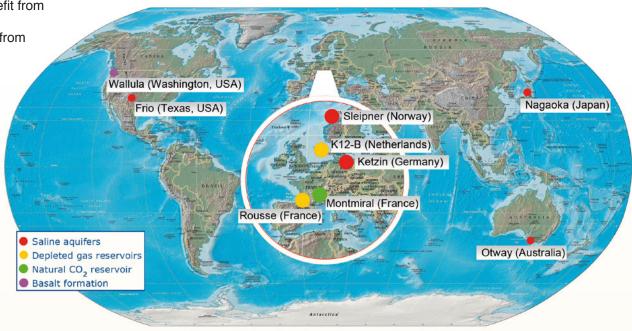
Achieved Outcomes

- Report on the international regulatory requirements on CO₂ geological storage and site abandonment
- Report on the current site abandonment methodologies in

relevant industries (overview of current practices in relevant industries)

- Review of relevant trapping mechanisms based on site portfolio
- Traffic light system for decision making in site abandonment
- CCSModelCompare: a software tool that compares the plausibility of different models on account of a comparison measured data
- Review of abandonment plan and criteria

Forthcoming Outcomes



- Regulators workshop for Best Practice
- Dry-run documents for Sleipner, K12-B, Ketzin
- Follow-up project brochure
- Best Practice guidelines for:
- Well abandonment requirements
- Risk management procedures
- Recommendations for the transfer of responsibilities
- New observation well at the pilot site in Ketzin, Germany (Ktzi 203/2012)
- Status reports for Ketzin, Sleipner, K12-B
- Final CO₂CARE conference

Different types of CO₂ injection sites studied in CO₂CARE

 CO_2CARE is defining technical assessment criteria how to demonstrate that a CO_2 storage site meets the three EU Directive requirements for transfer of responsibility. To do this, the teams use:

- integrated laboratory research
- field experiments
- numerical modelling ...all of which benefit from privileged real site performance data from nine CO₂ storage or test sites:

Europe	Site (*offshore)	Operator/ CO ₂ CARE partner	Current status	Injected CO ₂	Depth m
	Sleipner*	Statoil	injection	13.3 Mt (ca.1 Mt/y)	800 - 1000
	K12-B*	GDF Suez (TNO)	injection	80,000 t (ca.0.02 Mt/y)	3800
	Ketzin	VNG/GFZ	injection	60,000 t	650
	Montmiral natural CO ₂ reservoir	AirLiquide	temporarily inactive	-	2400
	Rousse	TOTAL	injection	90,000 t (until 2013)	4200
NSA	Wallula	Battelle- PNNL	planning	1,000 t	1200
	Frio	Univ. Texas at Austin	post-injection monitoring	1,600 t	1500
Asia-Pacific	Nagaoka	RITE	post-injection monitoring	10,400 t	1100
	Otway	CO ₂ CRC	injection	70,000 t (0.05 Mt/y)	1500

Project website and contact: www.co2care.org

PD Dr. Michael Kühn project coordinator (GFZ)

Dr. Mario Wipki project manager (GFZ)

CO₂CARE Timeline

	CO ₂ CARE launch
Jan 2011	Kick-off meeting at GFZ, Postdam, Germany
June 2011	General Assembly (GA), Potsdam, Germany
March 2012	Annual scientific confe- rence and GA, London, UK
Aug 2012	CO ₂ CARE Midterm Review, Brussels, Belgium
Sept 2012	Kick-off meeting of Best Practice and Regulatory compliance
Apr 2013	Annual scientific conference
May 2013	Review of abandonment plan criteria completed
July 2013	Regulators workshop for Best Practice
Nov 2013	Best Practice Guidelines and summary brochure
Dec 2013	Annual scientific conference
	Report on remediation techniques for site abandonment
	End of the project