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Anisotropic poroelasticity and wave-induced fluid flow.
Harmonic finite-element simulations.
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SUMMARY

A dominant P-wave attenuation mechanism in reservoir ratlsgismic frequencies is due to
wave-induced fluid flow (mesoscopic loss). The P-wave induacBuid-pressure difference at
mesoscopic-scale inhomogeneities (larger than the ppeedsit smaller than the wavelength),
generating fluid flow and slow (diffusion) Biot waves. Thedhgehas been developed in the
70’s for the symmetry axis of the equivalent transversayripic (TI1) medium corresponding
to a finely layered medium, and has recently been generatlizall propagation angles. The
new theory states that the fluid-flow direction is perpenidicto the layering plane and it
is independent of the loading direction. As a consequelneerdlaxation behaviour can be
described by a single relaxation function, since the mediomsists of plane homogeneous
layers. Besides P-wave losses, the coupling between thed|§2V waves generates shear-
wave anisotropic velocity dispersion and attenuation.

In this work, we introduce a set of quasi-static numericgleziments to determine the equiv-
alent viscoelastic TI medium to a finely layered poroelastedium, which is validated using
a recently developed analytical solution. The modelindnégue is the finite-element (FE)
method, where the equations of motion are solved in the sjpagaency domain. Numeri-
cal rock physics may, in many circumstances, offer an atére to laboratory measurements.
Numerical experiments are inexpensive and informativeesitne physical process of wave
propagation can be inspected during the experiment. Mergthey are repeatable, essentially
free from experimental errors, and may easily be run usitegredtive models of the rock and
fluid properties.

We apply the methodology to the Utsira aquifer of the North,$¢ehere carbon dioxide (G
has been injected during the last 15 years. The tests coraidenating layers of the same
rock saturated with gas and brine and a sequence of gastsatigandstone and mudstone
layers, which represent possible models of the reservdicap rock of the aquifer system. The
numerical examples confirm the new theory and illustratdrtigementation of the harmonic
tests to determine the complex and frequency-dependewtigt stiffnesses and the associated
wave velocities and quality factors.

Key words: Poroelasticity — thin layers — anisotropy — White mesosctygss — FE method.

1 INTRODUCTION tions in the framework of Biot theory (White model). They eon
sidered porous and thin plane layers. This has been the dirst s

It is known that one of the major causes of seismic attennatio  alled “mesoscopic-loss” mechanism. The mesoscopicthessy

porous media is wave-induced fluid flow (Pride, Berryman &-Har has be_en further reflngd by other resear_chers. A review can be

ris 2004), which occurs at mesoscopic scales. The P-wavegsd ~ found in Carcione & Picotti (2006), Carcione (2007), Canip

a fluid-pressure difference at mesoscopic-scale inhoneties Morency & Santos (2010) and Muller, Gurevich & Lebedev (@01

(larger than the pore size but smaller than the wavelengpht; t Attenuation in rocks may occur at other spatial scales: gracr
cally tens of centimeters), generating fluid flow and slowff(eli scopic and microscopic. The attenuation mechanism pestliocy
sion) Biot waves (continuity of pore pressure is achievedehy Biot theory (Biot 1962; Carcione 2007) has a macroscopic na-

ergy conversion to slow P-waves which diffuse away from the i  ture. Itis the wavelength-scale equilibration betweerpiseks and
terfaces). White, Mikhaylova & Lyakhovitskiy (1975) weteetfirst troughs of the fast P-wave. The related relaxation peak islyna
to introduce the mesoscopic-loss mechanism based on aparox  located at the kHz’s range and moves towards the high frequen
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cies with increasing viscosity and decreasing permegbitiich is
the opposite behaviour of the mesoscopic peak. On the oéimetf, h
microscopic models, such as the “squirt-flow” and “graiction”
models seem to be important at high (laboratory-scaleyfagies
(Pride, Berryman & Harris 2004).

The two aspects of the theory are thin layering and wave-
induced interlayer fluid flow. A finely-layered medium behses
a Tl equivalent medium at long wavelengths. Bruggeman (1937
and later other investigators studied the problem usirfgrdifit ap-
proaches, e.g., Riznichenko (1949), Postma (1955) Badd&2)
and Carcione (1992), who generalized the theory to the stiela
case to model)-(quality factor) anisotropy. They have consid-
ered single-phase (non-porous) media. On the other handeWh
Mikhaylova & Lyakhovitskiy (1975) obtained the complex and
frequency-dependent P-wave stiffness associated withytimene-
try axis of thin poroelastic layers. The next step has bebreaed
by Gelinsky & Shapiro (1997) who obtained the relaxed and un-
relaxed stiffnesses of the equivalent poro-viscoelas@diom. Fi-
nally, Krzikalla & Muller (2010) combined the two previousod-
els to obtain the five complex and frequency-dependenhstiffes
of the equivalent medium. They consider a 1D character of the
fluid pressure equilibration process between the poroel&st-
ers, assuming that the fluid-flow direction is perpendictbathe
layering plane. As a consequence, the model considers tme re
ation function, corresponding to the symmetry-axis P-wstif-
ness. Therefore, knowing this relaxation function and tigh-h
and low-frequency elastic limits of the stiffness tensagzikalla &
Muller (2010) obtained the five complex and frequency-aeieat
stiffnesses of the equivalent viscoelastic medium. Wer riefehis
new theory as Backus/White model. Moreover, Krzikalla &Ml
(2010) carried out time-domain FE simulations of poroétast-
laxation analogous to those described in Wenzlau et al 0)20-
ing a commercial simulation package.

x = (z,y,2) = (x1,22,23). Let u’(x) = (ui,u3,u3) and
u’ (x) = (uf,ud,ud) indicate the time Fourier transform of the
displacement vector of the solid and fluid (relative to th&d$o
phases, respectively ({f/ is the fluid displacement vectar; =
#(U? — u®), where is the porosity). Also, setr = (u®,u’),
let oi;(u) andpys(u) denote the time Fourier transform of the to-
tal stress and the fluid pressure, respectively, and Jét.°) be the
strain tensor of the solid phase. The frequency-domaisssain
relations of a single plane layerin a sequence ol layers, are
(Carcione 2007):

O’kl(u) = 2,LL(n) 6kl(us) + O (Agl) V-u®+ a(")M<”)V . uf) s
(1)
(2

For each layen, the coefficienju is the shear modulus of the bulk
material, considered to be equal to the shear modulus ofrhe d
matrix. Also

2
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with K¢ the bulk modulus of the saturated material (Gassmann
modulus). The coefficients in equations (1) and (2) can baiobd
from the relations (Carcione 2007)
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K¢ = K + o®M,

a=1-—
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whereK, K,,, and Ky denote the bulk moduli of the solid grains,
dry matrix and saturant fluid, respectively. The coefficiants
known as the effective stress coefficient of the bulk malteliet

ps and py denote the mass densities of the solid grains and fluid,

In order to test the model and provide a more general modeling respectively, and let

tool, we perform numerical simulations using an upscalirace-
dure to obtain the complex stiffnesses of the effective Ttlime.

It consists in the simulation of oscillatory compresstigiind shear
tests in the space-frequency domain, which enable us tanatbia
complex stiffnesses. The method is illustrated in Pic@é#rcione,
Santos & Gei (2010) and Santos, Carcione & Picotti (2011) for
single-phase media and it is generalized here for porousamat

use the FE method in the frequency domain to compute the so-

lutions of the associated boundary value problem. We oliten
quality factors and velocities as a function of frequenay propa-
gation angle from the complex stiffnesses and compositeityen
The methodology is applied to the problem of C@etection
and monitoring. Specifically, COhas been injected into the Ut-
sira formation at the Sleipner field in the North Sea since6199
To follow the migration of the C@ seismic monitoring surveys
have been carried periodically. Therefore, to quantify aheunt
of gas saturation it is essential to fully characterize trepprties
of the Utsira formation, in the reservoir and in the cap rackere
possible leakages may occur. We consider two possible sosna
present in-situ: alternating layers of gas and brine in #mesrock
frame (the Utsira sand) and a sequence of thin layers of gak- a
water-saturated Utsira sandstone and low-permeabilitystame.

2 THE STRESS-STRAIN RELATIONS

Let us consider isotropic poroelastic layers and denotetithe
variable byt, the frequency byf and the position vector by

p=(1=¢)ps+ dps ®)

denote the mass density of the bulk material. We define theaaat

P:< ) and B:(OI OI). ©)

0l bl
which are positive definite and non-negative, respectitéére, I
is the 3x 3 identity matrix, the mass coupling coefficient rep-
resents the inertial effects associated with dynamic éctésns be-
tween the solid and fluid phases, while the coefficiemcludes
the viscous coupling effects between such phases. Theyiame g
by the relations

pl psl
prl ml

Trr
(b )
wheren is the fluid viscosityx is the frame permeability an@

is known as the structure or tortuosity factor. Next,Aé¢t.) be the
second-order differential operator defined by

L(u)=[V-o(u),—Vps(u)]" . ®)

Then, ifw = 2« f is the angular frequency, Biot’'s equations of
motion, stated in the space-frequency domain, are

b="1, )

m =

—WPPu(z,w) 4 iwBu(z,w) — Llu(z,w)] =0, 9)

which are complemented with equations (1) and (2). We have ig
nored external sources in equation (9). Over the seismid bfine-
quencies, the inertial (acceleration) termy*Pu(z, w)) is always
negligible relative to the viscous resistance and can beadigd.
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Therefore, at this frequency band, the effects of wavedaddluid (a) ¢AP (b)
flow are described by the quasi-static Biot theory, i.eesstrequi-

librium within the porous matrix and Darcy’s flow of pore fluid
Then, the system equation to solve is the diffusion equation
X3 X3 AP
iwBu(z,w) — Llu(z,w)] =0, (10) <
Let us considerr; andzs as the horizontal and vertical co-
X1

ordinates, respectively. As shown by Gelinsky & Shapira9{@)9 X1
the medium behaves as a Tl medium with a vertical symmetiy axi AP
(the z3-axis) at long wavelengths. They obtained the relaxed and (c) AE} ¢ (d)

unrelaxed limits, i.e., the low- and high-frequency lingat-valued
stiffnesses, respectively. At all frequencies, the medhehaves
as an equivalent (or effective) Tl viscoelastic medium vagm- X3 AG¢ T X3 AP
plex and frequency-dependent stiffnesses;, I,J = 1,...,6. AG <
A model has been proposed by Krzikalla & Muller (2010) and is
given in detail in Appendix A.

Denoting byr;; the stress tensor of the equivalent TI medium, —
the corresponding stress-strain relations, stated in feces X1 X1
frequency domain, are (Carcione 1992, 2007) AE} (e)

T11(uw) = p11 €11 (u®) + p12 €22(u®) + p1s e33(u’), (11)

To2(u) = p12 e11(u”) + p11 e22(u®) + p13 ess(v’), (12)

(v s s s x2 AG

T33(u) = p13 €11(u”) + p13 eaa(u’) + p33 e3s(u”),  (13) TAG

T23(u) = 2 pss €23(u’), (14)

T1s(u) = 2 pss e13(u’), (15)

T12 (u) = 2 P66 €12 (us), (16) X1
where we have assumed a closed system. This can be done for th&igure 1. Oscillatory tests performed to obtajnz (a), p11 (b), pss (C),
undrained composite medium, for which the variation of flciah- p13 (d) andpeg (e). The orientation of the layers and the directions of the
tent¢ = —div u? is equal to zero. This approach provides the com- applied stresses are indicated. The thick black lines aetlyes indicate
plex velocities of the fast modes. To obtain also the compigac- rigid boundary conditions (zero displacements).

ity of the slow Biot wave, one needs to consider the stiffroesdfi-
cients related to the variation fluid content and fluid presswhere

the stiffness matrix has a X 7 dimension (Carcione 2007). This
calculation requires to know the complex and frequencyeddpnt
version of the coefficient®g, B; and B (see Appendix A). The
prs are the complex and frequency-dependent \oigt stiffnesses

It follows how to obtain the stiffness components.
i) ps3: We solve eq (10) in2 with the following boundary
conditions

predicte_d by Kr;ikalla & Miller (2010) t_o be determined Wme o(u)v-v=—AP, (z1,23)€T7, (17)
harmonic experiments. In the next section we present a ricaher _o T (18)
procedure to determine the coefficients in egs (11)-(16Yamdor- oy x =0, (1,73) € PR

responding phase velocities and quality factors. Thespepties, owv-x=0, (z1,23) €T UTT, (19)
which depend on frequency and propagation direction, aengh w'v=0, (z1,73)€ r*urk, (20)
Appendix B. We show t'hat for this purpose it is sufflment to-pe W =0, (x1,13)€ re 1)
form a collection of oscillatory tests on representativesgiinples f

of the viscoelastic material. w v=0, (r1,z3) €l (22)

In this experimente; (u®) = e22(u®) = ¢ = 0 and from eq (13)
we see that this experiment determipgs as follows.
3 DETERMINATION OF THE STIFFNESSES Denoting byV the original volume of the sample, its (com-

In order to determine the coefficients in egs (11)-(16) wepedl plex) oscillatory volume change\V(w), we note that

as follows. We solve eq (10) in the 2D case on a reference squar AV () AP

Q = (0, L)? with boundaryl in the (z1, z3)-plane. Sef” = T'* U =- , (23)

r?urfur?, where v pss(w)

rt = {(z1,23) €T : 21 = 0}, k= {(z1,23) €T 1@y = L}, valid in the_quasi-_static case. Equ_ation (23)_is anothemfgf the

8 _ {(21,23) €T : 25 = 0} T _ {(21,23) €T : 25 = L} stress-strain relation, whe®V/V is the strain and-AP is the
’ ’ ’ ’ ' ’ stress. After solving eq (10) with the boundary conditioh3){

Denote byv the unit outer normal o’ and lety be a unit tan- (22), the vertical displacements (z, L, w) onT'" allow us to ob-
gent onT" so that{v, x} is an orthonormal system oR. The tain an average vertical displaceme@tT(w) at the boundary'” .
sample is subjected to time-harmonic compressiyfisexp (iwt), Then, for each frequenay, the volume change produced by the

where P denotes pressure, and time-harmonic tangential forces compressibility test can be approximatedAy (w) ~ Lug’T(w),
AG exp(iwt), whereG is the shear stress (see Figure 1). which enable us to compuggs(w) by using the relation (23).
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i) p11: The boundary conditions are:

owv-v=—AP, (z1,23)e ", (24)
o -x =0, (x1,z3) el (25)
owyr-x=0, (z1,z3)eTPuUr”, (26)
uw v =0, (z1,23)elPur’, 27
uw' =0, (z1,23)el”, (28)
w v =0, (x1,z3) el (29)

In this experiment ezs (u”) e22(u’) = ¢ = 0 and from eq
(11) we have that this experiment determipes in the same way
indicated forpss.

iii) pss: The boundary conditions are:

—o(uwv =g, (r1,z3)¢€ rfurturt, (30)
uw' =0, (z1,23)€el?, (31
u' v =0, (z1,23) €T, (32)
where
(0,AG), (x1,z3) €T,
g= (07 7AG)7 ($1,£E3) EFR7
(—AG,O), (x1,x3) S rr.

The change in shape of the rock sample allow us to compute
pss(w) by using the relation
_ AG
 pss(w)’
wheref(w) is the angle between the original positions of the lat-
eral boundaries and the location after applying the sheassds
(Kolsky 1963).

The horizontal displacements (x1, L,w) at the top bound-
aryT'T are used to obtain, for each frequency, an average horizon-
tal displacement:>” (w) at the boundary™”. This average value
allows us to approximate the change in shape suffered byathe s
ple, given bytan[f(w)] ~ u$" (w)/L, which from eq (33) yields
pss(w).

iv) pes: Since this stiffness is associated with shear waves trav-
eling inthe(x1, z2)-plane, we take the layered sample, rotate ft 90
and apply the shear test as indicated;fey.

V) p13: The boundary conditions

tan[f(w)] (33)

o) -v=—AP, (x1,z3)e U, (34)
o(wv-x=0, (z1,z3) €T, (35)
u® v =0, (:El,xe,)EFLUFB, (36)
w v=0, (x1,z3)€T. (37)

Thus, in this experiment;, = ¢ = 0, and from egs (11) and (13)
we get

(38)

T11 = P11€11 + P13€33,
T33 = P13€11 + P33€33,

wheree1; andess are the strain components at the right lateral side
and top side of the sample, respectively. Then from eq (38) an
usingTi1 = 133 = —AP [c.f. eq (34)], we obtaipis(w) as

_ P11 — Ps3€s3

p13(w) (39)

€11 — €33
To estimate the effective complex stiffnesses, we use a BEepr
dure to approximate the solution of the equations of motit) (
under the boundary conditions described above. We usesailin
functions to approximate the solid displacement vectoremo

approximate the fluid displacement a closed subspace otttterv
part of the Raviart-Thomas-Nedelec space of zero order was e
ployed (Raviart & Thomas 1975; Nedelec 1980). The arguments
given in Santos, Rubino & Ravazzoli (2009) to derive a-péoror
estimates for the isotropic case can be extended to theseoBE p
lems to show that the corresponding errors measured in #rgen
norm, is of the order of the size of the computational mesh.

Table 1. Properties of the Utsira formation.

Sandstone  Mudstone
Grain bulk modulusK s (GPa) 40 20
density,p, (kg/m®) 2600 2600
Frame bulk modulusi,,, (GPa) 1.37 7
shear modulugy., (GPa) 0.82 6
porosity, ¢ 0.36 0.2
permeability,< (D) 1.6 0.01
Brine density,o., (kg/m®) 1030 1030
viscosity,n., (Pas) 0.0012 0.0012
bulk modulus,.K,, (GPa) 2.6 2.6
CO; density,p, (kg/m?) 505 -
viscosity,n, (Pa s) 0.00015 -
bulk modulus,K, (MPa) 25 -

4 NUMERICAL EXAMPLES

Let us consider the North-Sea Utsira formation located 80fem
low the sea bottom, which contains a highly permeable sandst
where carbon dioxide (C£ has been injected in the Sleipner field
(Carcione, Picotti, Gei & Rossi 2006). A typical sample has a
porosity of 36 % and contains 70 % quartz, 10 % feldspar, 5 %
mica, 5 % calcite, 5 % clay and 5 % illite. Using the averagehef t
Hashin-Shtrikman bounds, we obtain the mineral modli= 40
GPa and:. = 38 GPa, while the grain density js = 2600 kg/nf.
For z = 850 m, a pore pressugg = 10.7 MPa, confining pressure
pe = 18 MPa and temperatufié= 37 °C, the CQ properties are,
=505 kg/n? and K, = 0.025 GPa, and the brine properties (with-
out dissolved gas) are, = 1030 kg/ni and K, = 2.6 GPa. To
compute the matrix moduli of the Utsira sand, we use Walton’s
“smooth” model and a modified Hashin-Shtrikman lower bound
(Carcione, Picotti, Gei & Rossi 2006), because the rock tisera
unconsolidated. We obtailf,,, = 1.37 GPa ang = 0.82 GPa, giv-

ing dry-rock P- and S-wave velocities of 1220 m/s and 704 m/s,
respectively. A summary of the various properties thatattarize

the sandstone is given in Table 1.

In the plots that follow, symbols denote results from the KE e
periments and solid and dashed lines correspond to thetealy
solutions. The examples shown here validate the analysioial
tion of Krzikalla & Muller (2010). First, we consider an afhating
sequence of brine and gas saturated sandstone layers lofebsc
di andds, respectively, such that = d; + d2 = 0.6 m. The CQ
saturation is then given b§, = d2/(d1 + d2). Figure 2 shows
the P-wave phase velocity (a) and dissipation factor (bperer
dicular to and along the layering plane as a function of fesupy
andS, = 0.5. The two curves coincide, since the shear modulus is
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Figure 2. P-wave phase velocity (a) and dissipation factor (b) as etium
of frequency in the directions parallel (circles and soifet) and perpen-
dicular (diamonds and dashed line) to the layering plane.skmbols cor-
respond to the FE experiments. Here, the analytical sotiddashed curves
coincide, since the medium is isotropic. The vertical lindicates the fre-
quency (50 Hz) used for the polar plots. The medium consfsisequence
of gas and brine saturated thin sandstone layers with a gastan of 50
% (d1 =d2 =30 cm).

uniform throughout the medium (the effective medium isrispic
andpi1 = pss andpis = pi1 — 2pss). The energy velocity and
quality factor versus propagation angle are given in Figui®ince
the medium is isotropic, there is no coupling between the ¢ an

SV modes and the SV wave is lossless. The P-wave attenuation

is rather strong with a quality factor approximately equabtat
surface-seismic frequencies (50 Hz).

The second example considers alternating layers of muelston
and sandstone saturated with brine, with thicknesses of &ran
1 cm, respectively. Within the Utsira aquifer, compactedistane
layers have been identified (Arts, Chadwick, Eiken, Trani &D
land 2007), which act as barriers to the upward migratiorhef t
CO,. Table 1 shows the hypothetical poroelastic propertiehef t
mudstone. The upper part of the aquifer (cap rock) can beabe c
where the proportion of mudstone is substantial. The phakev
ity and dissipation factor versus frequency are shown ineigt.
The attenuation is higher along the direction perpendicidahe
layering plane and the medium is practically lossless atbaghat
plane. Higher attenuation is associated with higher velatisper-
sion as can be seen in Figure 4a. Figure 5 shows the energytyelo
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Figure 3. Polar representation of the energy velocity (a) and quédityor
(b) corresponding to a frequency of 50 Hz. The medium cordist se-
guence of gas and brine saturated thin sandstone layergabtsaturation
is 50 % @1 = d2 =30 cm) (see Figure 1).

and dissipation factor versus propagation angle at a fregyuef
50 Hz. The three wave modes are indicated in the plots. Theevel
ity anisotropy of the shear modes is substantial, with aceatile
shear-wave splitting. As can be seen, the coupling betwezgP
and gSV waves generates strong shear attenuatiof? at B cou-
pling effect is mainly influenced by the contrast in dry-roigkdity
between the mudstone and the sandstone.

The last example considers alternating layers of mudstode a
sandstone saturated with @@f thicknesses 5 cm and 1 cm, re-
spectively, and a period of 6 cm. In this case, the brine has be
replaced by gas and the sequence may represent possitdgdsak
to the cap rock. The phase velocity and dissipation factosuse
frequency are shown in Figure 6. The attenuation is highamgal
the layering plane, contrary to the prediction of the secexaimn-
ple. The energy velocity and dissipation factors as a fonatf the
propagation angle is represented in Figure 7, where theidrezy
is 50 Hz. There is a noticeable shear-wave splitting as irptke
vious example. While the qSV attenuation curves are qtigkta
similar to those of the previous case, the qP curves showppe-o
site behaviour with strong attenuation along the layeriingation,
although in this case the shear attenuation is much weasertlie
gP attenuation. In this case, maximum shear attenuatiomrset
30°.
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Frequency(Hz) Figure 5. Polar representation of the energy velocity (a) and disisipdac-
tor [(1000/Q)(sin 8, cos 6)] (b) corresponding to a frequency of 50 Hz.
Figure 4. P-wave phase velocity (a) and dissipation factor (b) as etiimm The medium consists of a sequence of mudstone and wateatsatisand-
of frequency in the directions parallel (circles and soiiet) and perpen- stone layers of 5 cm and 1 cm, respectively (see Figure 4).

dicular (diamonds and dashed line) to the layering plane.skmbols cor-

respond to the FE experiments. The vertical line indicdtedrequency (50

Hz) used for the polar plots. The medium consists of a sequehmud-

stone and water-saturated sandstone layers of 5 cm and &gpectively. attenuation is stronger along the direction perpendiciddayer-
ing if the sandstone is saturated with brine, while the ojtpdse-
haviour occurs if the fuid is gas, i.e., there is more attépnalong

5 CONCLUSIONS the layering plane. The shear wave has no loss along theiditec

We have presented a set of quasi-static harmonic experment Parallel and perpendicular to the layering plane, and hasman

based on a numerical finite-element method, to determine the 2ltenuation around 45with magnitudes comparable to those of

equivalent complex and frequency-dependent stiffnessefimely the gP wave. The coupling is mainly determined by contratiten

layered fluid-saturated porous material, which allow usimpute ~ dry-rock moduli. On the other hand, the SH wave is losslebe. T

the wave velocities and quality factors as a function of tietpy agreement between the_numerlcal and analytical resulthdéoex-

and propagation angle. These experiments are completely co aMPles presented here is very good, although further testsee-

trolled and may be an alternative to or precede the mostycest essary to verify the 1D character of the fluid flow.

field or laboratory experiments. The results are comparedatyt- The numerical solver proposed in this work can be applied
ical solutions from the Backus/White model, which hold foefiy- to more complex geological situations (lower symmetrigssizas-

layered horizontally homogeneous porous media at long wave UC heterogeneities, fractures, etc.) and implementederptocess-
lengths. The proposed numerical procedure is based on e-finit ing and interpretation of real seismic data for characition pur-

element solution of the equations of motion in the spacetieacy poses.
domain to simulate harmonic compressibility and sheastest
We consider periodic alternating layers saturated withéori
and gas, and a sequence of mudstone/sandstone layers with th
propertigs of the North-Sea Uts?ra aquifer. The mediumg'Erdmic ACKNOWLEDGMENTS
if the solid frame of the layers is uniform, but substantiav&ve

attenuation is induced by the brine/gas partial saturatiam the This work has been partially funded by the European Union un-
other hand, when the properties of the frame varies, suchen t der the framework of the CO2CARE project. We thank Fabian
mudstone/sandstone sequence, velocity and attenuaisntrapy Krzikalla and Tobias Muller for providing a preprint of tihe

can be observed in the gP and gSV wave modes. In this case, thananuscript.
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Figure 6. P-wave phase velocity (a) and dissipation factor (b) as a-fun

tion of frequency in the directions parallel (circles antidstne) and per-
pendicular (diamonds and dashed line) to the layering pl&he symbols
correspond to the FE experiments. The vertical dashedrtfieates the fre-
guency (50 Hz) used for the polar plots. The medium consiatsg#quence

of mudstone and C@®saturated sandstone layers with thicknesses of 5 cm

and 1 cm, respectively.
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APPENDIX A: MESOSCOPIC-FLOW ATTENUATION
THEORY FOR ANISOTROPIC POROELASTIC MEDIA

White’'s mesoscopic attenuation theory of interlayer flowh{i#,
Mikhaylova & Lyakhovitskiy 1975; Carcione & Picotti 2006k
scribes the equivalent viscoelastic medium of a stack ofttvio
alternating porous layers of thicknegs andd., such that the pe-
riod of the stratification isl = di + d2. The theory gives the
complex and frequency dependent stiffngss White model has
been generalized by Krzikalla & Miller (2010) to anisotimme-
dia, i.e., they have obtained the five stiffnesses of thevatpnt
transversely isotropic medium, denoted fy;. The stress-strain
relations is given by eqs (11)-(16) and

prs(w) = cry + (ﬂ) [ps3(w) — ca3], (A1)

€33 — C33
wherec? ; andc;; are the relaxed and unrelaxed stiffnesses.
According to Gelinsky & Shapiro (1997) [their eq. (14)], the
quasi-static or relaxed effective constants of a stack obglastic
layers are

CgG = BT = <1U‘>7

s T ‘s * )\m )\m 2 1 -
C11*26662012:BQZ2<E—M>+<E—> <E_>
2

B;
By
o= (2 \ [\ BiBi
13 3 Em Em Bg )
. . 1\ B’
CS:B4:<E_> B7*
m 8

B g (oot L/ o N /A /N
o Em w/ \Em/ \ En ’
. ./« 1\
Bi=-5i (5 ) (7))
-1
N 1 o? a \? 1 \*
BS—[<M>+<7>‘<E> (z) } |
(A.2)
where
2 4
/\m:Km*§H and Em:Km+§u (A.3)

and we have also reported the notation of that paper fortyldmi
the case of no interlayer flow, i.e., the unrelaxed regime stiff-

nesses are
(1)
Eq Eq Eg ’
e = <7EG‘2“><L>_1
Ec Ee/
1 —1
()

T
C55 = Cs5

T
C66 = C66,

c11 — 2ce6 = C12 = 2

(A.4)

[Gelinsky & Shapiro (1997), eq. (15)], where
Eg = Em+d*’M (A.5)

is Gassmann’s P-wave modulus. Gassmann’s bulk modulis;is
as given in eq (4).
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Finally, the P-wave modulugss is (White, Mikhaylova &
Lyakhovitskiy 1975; Carcione & Picotti 2006) [see also Gamne
(2007), eq. (7.400)]

1 2(7‘2 — 7‘1)2 :| -1
= _— N . A-6
pas {033 + iw(dy + d2)(I1 + I2) (A-6)
where
aM
and
_ ad _  [lwnEe
Iflmcoth<2), a= M. (A.8)

for each single layer.

The assumptions in Krzikalla & Muller (2010) theory are:

i) The stiffnesses matrix is symmetric (see Carcione (2007)
eg. (2.24) and related discussion);

ii) The fluid-flow direction (perpendicular to layering) is-i
dependent of the loading direction and the relaxation hiebavs
described by a single relaxation function or stiffness, hes;(w).
This means that that the theory is valid for plane layers hatld
single relaxation function cannot be used in the case of 2BDor
heterogeneities;

iii) The stiffness pss used here corresponds to a periodic
medium (period =1 + d2) composed of two materials.

The fact that the relaxed and unrelaxed shear moduli cancid
[see eq (A.4)] implies that there is no shear loss along tteetions
perpendicular and parallel to layering. The qSV wave isatisipe
due to its coupling with the gP wave, but the horizontallygpaed
SH wave is not dispersive, sinegs = c55 andcss = cgg imply
pss = cs5 andpes = ce6, according to eq (A.1). Moreover, an
alternating sequence of thin layers saturated with diffefleids
but having the same shear modulus does not generate apisotro
If there are no changes in the shear moduli, the long-wagéten
equivalent Backus medium is isotropic.

Following Gelinsky & Shapiro (1997), the average medium
has the density

(P)s (A.9)

ﬁ =
wherep is given in eq (5).
The approximate transition frequency separating the eelax

and unrelaxed states (i.e., the approximate location offlagation
peak) is (Carcione 2007)

_ 8kME,,
fo= TndEG
where M, Eq, n andd refer to each single layer. At this ref-
erence frequency, the Biot slow-wave attenuation lengthaksq
the mean layer thickness or characteristic length of thermd:
geneities (see next paragraph). Eq (A.10) indicates tkatthso-
scopic loss mechanism moves towards the low frequencidsinvit
creasing viscosity and decreasing permeability, i.e.,agosite
behaviour of the Biot relaxation mechanism.

(A.10)

APPENDIX B: WAVE VELOCITIES AND QUALITY
FACTORS

We consider homogeneous viscoelastic waves (Carcione)2007
The complex velocities are the key quantity to obtain theemae+
locities and quality factor of the equivalent anisotropiedium.
They are given by (Carcione 2007)

Vgp = (25)_1/2\/p11lf + pasl2 +pss + A

vasv = (2p)7Y/? V/P11l? + pasl + pss — A

vsn = p Y2\ /P62 + pssl2

A= /l(p11 — ps5)B3 + (ps5 — p33) B + 4[(p13 +p55)11(13]23

B.1

wherel; = sin 0 andls = cos 0 are the directions cosinesjs the
propagation angle between the wavenumber vector and theeym
try axis, and the three velocities correspond to the gP, @SSk
waves, respectively. The phase velocity is given by

oo [ut)]"

wherev represents either,p, vqsv Or vsu. The energy-velocity
vector of the gP and gqSV waves is given by

(B.2)

% = (s +lscoty) "1 + (L tan®) + 13) ‘és.  (B.3)
p
(Carcione 2007; eg. 6.158), where
_ Re(B"X +E&W)
tan) = —Re(ﬂ*W Te2) (B.4)

defines the angle between the energy-velocity vector and éxés,

8 =+AZxB,

£=+pvW/ATB, (B.5)

B = p11l§ — ps3l3 + pss cos 20,

where the upper and lower signs correspond to the gP and gS
waves, respectively. Moreover,

W = pss5 (&1 + Bla),

X = Bpiili + Epasls,

Z = Ppisli + Epssls
(Carcione 2007; eqgs. 6.121-6.123), where “pv” denotes timeip

pal value, which has to chosen according to establishegtierit
On the other hand, the energy velocity of the SH wave is

(B.6)

1 . .
Ve =—"— (licosé1 + lzcs5€3) (B.7)

r
and

tany = (ZGG) tan 6 (B.8)

(Carcione 2007; eq. 1.148), sinpg; andpss are real quantities.
In general, the phase velocity is related to the energy itgloc

The mesoscopic loss mechanism is due to the presenceWhereve = |ve|. The quality factor is given by

of the Biot slow wave and the diffusivity constant ® =
kME.,, /(nEq) (Carcione 2007). The critical fluid-diffusion relax-
ation length isL = /D /w. The fluid pressures will be equilibrated
if L is comparable to the period of the stratification. For smalle
diffusion lengths (e.g., higher frequencies) the presswi not

be equilibrated, causing attenuation and velocity dispersNo-
tice that the reference frequency (A.10) is obtained forffusion
lengthL = d, /4.

by
vp = Ve cos(yp — 0), (B.9)
_ Re(v?)
Q= fie® (B.10)

The values of the gP quality factor along the layering planeé a
symmetry axis are

. _ Re(pn) an o0 = _ Re(pss)
Qr(0=7/2) T (pir) d Qp(0=0) Im(p3?%711)
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respectively, while those of the shear waves are infinitagathose
directions.



